Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acad Radiol ; 30 Suppl 2: S50-S61, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37270368

RESUMO

RATIONALE AND OBJECTIVES: To carry out radiomics analysis/deep convolutional neural network (CNN) based on B-mode ultrasound (BUS) and shear wave elastography (SWE) to predict response to neoadjuvant chemotherapy (NAC) in breast cancer patients. MATERIALS AND METHODS: In this prospective study, 255 breast cancer patients who received NAC between September 2016 and December 2021 were included. Radiomics models were designed using a support vector machine classifier based on US images obtained before treatment, including BUS and SWE. And CNN models also were developed using ResNet architecture. The final predictive model was developed by combining the dual-modal US and independently associated clinicopathologic characteristics. The predictive performances of the models were assessed with five-fold cross-validation. RESULTS: Pretreatment SWE performed better than BUS in predicting the response to NAC for breast cancer for both the CNN and radiomics models (P < 0.001). The predictive results of the CNN models were significantly better than the radiomics models, with AUCs of 0.72 versus 0.69 for BUS and 0.80 versus 0.77 for SWE, respectively (P = 0.003). The CNN model based on the dual-modal US and molecular data exhibited outstanding performance in predicting NAC response, with an accuracy of 83.60% ± 2.63%, a sensitivity of 87.76% ± 6.44%, and a specificity of 77.45% ± 4.38%. CONCLUSION: The pretreatment CNN model based on the dual-modal US and molecular data achieved excellent performance for predicting the response to chemotherapy in breast cancer. Therefore, this model has the potential to serve as a non-invasive objective biomarker to predict NAC response and aid clinicians with individual treatments.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Estudos Prospectivos , Ultrassonografia/métodos , Estudos Retrospectivos
2.
FEBS Open Bio ; 10(12): 2733-2739, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091216

RESUMO

In the paper industry, chlorine is often used to treat the pulp for bleaching. After pulping, a large amount of xylan is present in the fiber. Xylanase can be used to degrade xylan in an eco-friendly process called biobleaching, which can help minimize the usage of chlorine in the delignification process. However, a bottleneck in the adoption of biobleaching is the cost of xylanase and the requirement that xylanase be active and stable at extreme conditions. Here, we investigated whether using sodium alginate beads to immobilize an extracellular xylanase from Bacillus subtilis (Lucky9) can reduce the potential cost of enzyme usage. The optimal pH and the activity of the immobilized enzyme were increased at optimal temperature compared with the free enzyme. In addition, immobilized xylanase was shown to be more stable than free xylanase. The results of this study suggest that the immobilized xylanase has potential applications in the biobleaching industry.


Assuntos
Bacillus subtilis/enzimologia , Endo-1,4-beta-Xilanases/metabolismo , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...